Calculate confidence intervals for population mean and proportion with step-by-step solutions
A confidence interval is a range of values that is likely to contain the true population parameter with a specified level of confidence. It provides a way to estimate population parameters from sample data and quantify the uncertainty in our estimates.
Used when estimating the mean of a population from sample data
CI = x̄ ± (z × SE)
Used when estimating the proportion of a population with a certain characteristic
CI = p̂ ± (z × SE)
CI = x̄ ± (z × σ/√n)
Where:
CI = p̂ ± (z × √(p̂(1-p̂)/n))
Where:
| Confidence Level | z-score | α/2 |
|---|---|---|
| 90% | 1.645 | 0.05 |
| 95% | 1.960 | 0.025 |
| 99% | 2.576 | 0.005 |
Sample mean = 50
Population SD = 10
Sample size = 100
Confidence level = 95%
CI = 50 ± (1.96 × 10/√100)
CI = 50 ± 1.96
CI = [48.04, 51.96]
Sample proportion = 0.6
Sample size = 200
Confidence level = 90%
SE = √(0.6 × 0.4 / 200) = 0.035
CI = 0.6 ± (1.645 × 0.035)
CI = [0.542, 0.658]